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This paper carries out the First principles calculation of the crystal structure (zincblende (B3)) and phase transition of (B3) 
Aluminum phosphide based on the density functional theory (DFT) and density functional perturbation theory (DFPT). Using 
the relation between enthalpy and pressure, and the Born stability criteria, it finds that the transition phase from the B3 
structural to the metallic nickel arsenic (NiAs) phase occurs respectively at the pressures of 6.62GPa and 22.25GPa. Then 
the elastic constants C11, C12, C44, bulk modulus, shear modulus, anisotropy factor, piezoelectric coefficient and the linear 
and quadratic pressure coefficients of the energy bandgaps under pressures are discussed in detail. The results of the 
structural parameters, elastic and electronic properties are in good agreement with the available theoretical and 
experimental values. The maximum value of pressure is taken to be 9.50GPa, because beyond this value, the phase of AlP 
transforms from zincblende phase to nickel arsenic phase. 
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1. Introduction 
 
Understanding the physical properties of semi-

conductor compounds plays a vital role in developing 
new devices and technologies. Aluminum Phosphide is a 
wide-indirect band gap semiconductor ind

gE = 2.5eV [1, 
2]. At normal conditions, AlP crystallizes in the zinc-
blende structure [3, 4]. AlP is unstable in moist air, 
emitting poisonous phosphine gas, which has inhibited 
experimental studies of its high pressure structures [5]. 
The zincblende phase is known to transform to the 
nickel arsenic (NiAs) phase [6] (or from the zincblende 
phase to rocksalt phase [3]) at about 9.5±5 GPa [4]. The 
hexagonal nickel arsenide crystal structure (P63mc) can 
be thought of as an hcp stacking of anions with cations 
located in the octahedral interstices: each atom has six 
unlike nearest-neighbors while the cations have 
additional like-atom neighbors. It is unrelated to other 
structures observed in the III-V compounds, and has 
been reported in AlP, AlAs and AlSb. It represents an 
efficient packing of large anions and small cations, but 
the high pressure structures are generally metallic [5]. 

At a pressure of about 52GPa the NiAs phase has 
been reported to undergo a Cmcm-like distortion with no 
significant change in volume. The CsCl phase is a 
possible candidate for AlP at about 100GPa [5, 7].  

Recently, Ameri et al [8] used a full-potential linear 
muffin-tin-orbital (FP-LMTO) method with both the 
local density approximation (LDA) and the generalized 
gradient approximation (GGA) to investigate the effect 
of increasing concentration of aluminum on the 
structural properties of AlxIn1–xP Alloy. In the present 
work, we report first principles study of the hydrostatic 
pressure effect on the unit cell volume, crystal density, 

independent elastic constants, bulk modulus, shear modulus, 
anisotropy factor, piezoelectric coefficient, and the linear 
and quadratic pressure coefficients of the energy bandgaps 
and stability criteria for AlP compound in its structure 
zincblende phase, using the pseudopotential plane wave 
method, in the framework of the density functional theory 
within the local density approximation. 

 
 
2. Computational methods 
 
The first-principles calculations were performed by 

employing pseudopotential plane-waves approach based on 
the density functional theory (DFT) [9] and density 
functional perturbation theory (DFPT) [10] and implemented 
in the ABINIT code [11]. We used the Teter and Pade 
parameterization [12] for LDA. Only the outermost electrons 
of each atom were explicitly considered in the calculation. 
The effect of the inner electrons and the nucleus (the frozen 
core) was described within a pseudopotential scheme. We 
used the Trouiller Martins scheme [13] to generate the norm 
conserving nonlocal pseudopotentials. A plane-wave basis 
set was used to solve the Kohn-Sham equations in the 
pseudopotential implementation of the DFT-LDA. 

The Brillouin zone integrations were replaced by 
discrete summations over a special set of k-points, using the 
standard k-point technique of Monkhorst and Pack [14] 
where the k-point mesh used is (6 × 6 × 6). The plane-wave 
energy cutoff to expand the wave functions is set to be 60 
Hartree (1Hartree = 27.211396 eV, and                    
1eV = 1.602 × 10–19 J). Careful convergence tests show that 
with these parameters relative energy converged to better 
than 10-5eV/atom. 
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3. Results and discussions  
 
3.1. Structural and electronic properties at P=0       
 
After having determined the kinetic energy cut-off 

and the number of special k-points which gives the best 
convergence possible of total energy, they are used to 
calculate the total energy for various values of the lattice 
constant. Energies were calculated for various values of 
the lattice constant, the different values obtained are then 
traced as a function of the unit cell volume. One can 
deduce the static structural properties such as the 
equilibrium lattice constant from the volume which 
gives the minimum energy, the bulk modulus B0 and its 
pressure derivatives '

0B . With the fitting on the values of 
total energy as a function of the unit cell volume using 
the following Murnaghan equation [15]  
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Where 0B is the bulk modulus given by the relation (2) 

at P=0, 0V  is the equilibrium volume, ( )0VE  is the 

energy in equilibrium volume, '
0B  is the pressure 

derivatives of the bulk modulus at P=0 and, a is the 
lattice constant. The figure1 watches the evolution of the 
total energy as a function of the unit cell volume of the 
(B3) AlP. 

130 140 150 160 170 180 190

-1065.0

-1064.5

-1064.0

-1063.5

-1063.0

 T
ot

al
 e

ne
rg

y 
(e

V
)

Volume (A3)

 AIP

 

 
 

Fig. 1. Total energy varying with the unit cell volume 
of the (B3) AlP compound. 

 
The results for: lattice parameter a0, bulk modulus 

B0, and its pressure derivative B0′ are reported in table.1 
and compared with the available experimental [16, 17] 
and theoretical data [3, 6-8, 18-32].  

As can be seen, our calculated equilibrium lattice 
parameter a0 (10.27255Bohr = 5.436Ǻ) is in good 
agreement with the previous calculations data: the value 
obtained in this work of lattice constant is equal exactly 

the value of the Ref [22] and it deviates from the calculated 
[30] and [27] ones within 0.11% and 0.30% respectively. As 
can be seen, also that our calculated bulk modulus B0 
obtained from the equation (2) and from the equation (8) are 
also in good agreement with the previous calculations, they 
are deviate from the calculated [27] within 0.24% and 3.74% 
respectively. The pressure derivatives of the bulk modulus 
B0′ is also in good agreement with the available theoretical 
data [6, 22]. The above results also show that the 
computational methods and parameters used in this paper are 
reasonable.  

The electronic and optical properties of the 
semiconductors have been the subject of great interest, both 
experimental and theoretical, because of their technological 
importance [33]. The result for: the energy band gaps 
obtained in this work is reported also in table.1 and 
compared with the available experiments [1, 2, 16], and 
theoretical data [3, 8, 22, 28-30]. At the equilibrium volume, 
the minimum of the conduction band is found to be at the X 
point, rendering this compound an indirect semiconductor 
with a (Γv → X c) optical transition of 1.408eV, this value is 
in good agreement with the previous calculations (1.41eV) 
of the reference [30], and the deviation is only 0.14%. 

 
 Table 1. Lattice constants a0, bulk modulus B0 and its 
pressure derivative B0′, and the energy band gaps Eg of 
(B3) AlP at P=0 in comparison with the available, 
experiments [1, 2, 16, 17] theoretical values [3, 6-8, 18-32]  
a from the equation (2), b from the equation (8),  * at room  
                                             temperature. 

 
Parameter   
a0 (Å)   5.436           5.453[3]           5.471[6]            5.45[7]             
            5.449[8]LDA        5.534[8]GGA        5.467 [16]   
            5.4625[17]*           5.4635[18]            5.451[19, 20]            
            5.436[22]               5.462[23]               5.44285[24]             
            5.417[25]                5.508[26]               5.42[27]                  
             5.520[28]               5.4131[29]             5.43[30]                  
            5.40[31]                  5.48[32]               
B0  (GPa)         86.29 a             89.74b                      87.8[3]              
              86.5[6]              90[7]                      87.067[8]LDA            
             81.89[8]GGA      86[20]                  89[22]          
             95.46[24]             88.6[25]               81.52[26]           
             90.46[30]             90[31]                  88[32]    
B0′        4.05                      3.852[3]              4.18 [6]        4.34[21]     
             4.14[22]               3.72[30] 
Eg         1.408                    2.50[1]           .500[2]        6.6075[3]        
             1.4658[8]LDA     1.6386[8]GGA      2.52[16]                      
             2.43[17]*              1.44[22]           1.4194[29]      1.41[30]    

  
It is clearly seen that the band gaps are on the whole 

underestimated in comparison with experiments results [1, 2, 
16, 18]. This underestimation of the band gaps is mainly due 
to the fact that both the simple form of LDA or GGA do note 
take into account the quasi-particle self energy correctly [34] 
which make them not sufficiently flexible to accurately 
reproduce both exchange and correlation energy and its 
charge derivative. The calculated energy band gaps for AlP 
compound is in general in good agreement with the available 
theoretical results [3, 8, 22, 28-30].  
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To illustrate the degree of covalency in this 
compound, Fig. 2 shows the typical features of the 
ionicity bonded semiconductors. The net charge transfer 
from the cation (Aluminum, Al) to the anion 
(Phosphorus, P), which indicates the degree of the 
ionicity of the bonding, it is relatively as large as 
suggested by Fig. 2; there remains a considerable (fi = 
0.421[35], or fi is the Phillips ionicity) degree of ionic 
character in the cation-anion bond, and we notice that 
the chemical bonding is strongly ionic, i.e. a much 
charge is transferred from the Aluminum to Phosphorus. 
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Fig. 2.  Total valence charge densities along the <111> 
direction at equilibrium volume 

 
3.2. Hydrostatic pressure effect 
 
3.2.1 Pressure of the phase transition 
  
The stability of an particular structure is decided by 

the minimum of the Gibbs energy, which is given as [5] 
 
                G = U + PV − TS                                    (3)   

                                                       
Where : U is the total internal energy, P the pressure, T 
the temperature, S the entropy, and V the volume.  

When structures are considered by calculation at 
0K, it is possible that they are unstable with respect to 
symmetry-breaking strain (elastic instability), atomic 
motion (phonon instability) or some combination. It is 
also possible that such instabilities develop with 
increasing pressure [5].    

To investigate the pressure-induced structural 
transition, we optimized both the cell parameters and 
atomic positions for ZB and the metallic nickel arsenic 
(NiAs) phases under each hydrostatic pressure. The 
computed relative enthalpy versus pressure curves for 
both phases is shown in Fig. 3. The transition pressure is 
a pressure at which curves for both phases crosses. As is 
shown in Fig. 4, the phase-transition pressure from ZB 
to the metallic nickel arsenic (NiAs) structure is found to 
be 6.62GPa. 
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Fig. 3. Relative enthalpy of metallic nickel arsenic (NiAs) 

phase with respect to ZB structure. The crossing of ZB and 
nickel arsenic (NiAs) phases occurs at about 6.62GPa. 

 
3.2.2 Structural properties  
 
In order to further validate the reliability and accuracy 

of our calculated structural properties, the calculated unit 
cell volumes under a series of applied hydrostatic pressures 
were used to construct the P-V data set, which was 
subsequently fitted by the Murnaghan equation [36] 

 

   

( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= 1)4(1)(

3
2

0
3
5

0
3
7

0 '
04

3
02

3
V
V

V
V

V
V BBVP

        

 (4) 

 
Where: 0B  is the bulk modulus at 0P = , '

0B  is its pressure 
derivative at 0P = , V0 is the volume of unit cell, is fixed at 
the value determined from the 0P = data, and V is the 
volume of unit cell at 0≠P . 

In order to show how the structural parameter in this 
com-pound behave under pressure, the equilibrium 
geometries of (B3) AlP unit cells were computed at fixed 
values of applied hydrostatic pressure in the 0 to 9.50GPa 
range, where, at each pressure, a complete optimization for 
the volume unit cells was performed. In Fig. 4, we plot the 
variation of the unit cell volume and the relative unit cell 
volume versus the applied hydrostatic pressure.  
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Fig. 4. Pressure-volume dependence and the relative unit 

cell volume versus applied hydrostatic pressure. 
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The structure and composition of crystals can be 
used to calculate the density g, which is the mass divided 
by the volume, it is given as [37] 
 

)cos.cos.cos1(2sinsinsin...
..

222 γβαγβα −−++
=

cba
uMZg       

(5)    
                                                                                    

where Z is the number of formula units in a crystal unit 
cell, M is the molecular weight of a formula unit in amu, 
u is weight of an amu, a , b , and c are unit cell axes 
lengths, and α, β and γ  are unit cell axes angles. 

In general, the pure amorphous materials have lower 
density than the corresponding crystalline materials.  

The X-ray crystal density g can be simply written, 
in terms of dM, as [38] 

 
                  g = MdM /NA = 4M /NAV                         (6) 

 
Where M is the molecular weight (for AlP, M= 57.9552 
uma), NA=6.022×1023mol−1 is the Avogadro constant, V 
is the unit cell volume, and dM is the molecular density. 
For the zincblende-type semiconductors (dM = 4/a3, 
where a is the lattice parameter).  

The calculated crystal density at different values of 
pressure, for (B3) AlP is plotted in Fig. 5.  
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 Fig. 5. Crystal density varying with the hydrostatic  
pressure of the (B3) AlP compound. 

 
 

For AlP, at 0=P , g = 2.397g/cm3, this value is in 
good agreement with the previous calculations data, it 
deviates from the results 2.3604 g/cm3 and 2.40g/cm3 of 
the Refs [39] and [40] ones within 1.53% and 0.14% 
respectively. 

 
3.2.3 Elastic properties 
 
There are different methods to obtain the elastic 

constant through the first principle. Nielsen and Martin 
[41] developed a method using strain-stress relation. 

Recently, Hamman et al. [42] developed a reduced 
coordinate metric tensor method for the linear response 

formulation of strain type perturbations which could be 
calculated by the DFPT method. The elastic constants 
reported in this article are obtained by the method used by 
the Ref [43] as implemented in the ABINIT code. The 
elastic stiffness tensor of a cubic structure has three 
independent components, namely C11, C12 and C44 in 
Young’s notation. The obtained elastic constants Cij, of (B3) 
AlP at different pressure are presented in figure 6. As shown 
in this figure, we find, that all the elastic constants Cij 
increase gradually with the increasing of the pressure up to 
9.50GPa. 
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Fig. 6. Elastic constants Cij versus the pressure of (B3) AlP  
 

The shear modulus is also known as the rigidity. For 
cubic single crystal, the shear modulus G and the elastic 
constants C11, and C12 are related by the following relation 
[38]  

                   G = (C11 - C12) /2                                            (7) 
 

The obtained values of the shear modulus G of (B3) AlP at 
different pressure are presented in figure 7. 
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Fig. 7. Shear modulus G versus the hydrostatic pressure of 
the (B3) AlP compound.  

 
Bulk modulus describes the elastic properties of a solid 

when it is under pressure. For cubic crystals the bulk 
modulus B, and the elastic constants are related by [38] 
 

                   ]3/)2[( 1211 CCB +=                            (8) 
 

The obtained values of bulk modulus B of (B3) AlP at 
different pressure are presented in Fig. 8. 
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Fig. 8. Bulk modulus B versus the pressure of (B3) AlP  
 

The Zener anisotropy factor (Z), which is the square 
of the ratio of the acoustic velocity of the transverse 
mode propagating along [100] and that of the transverse 
mode propagating along [110] with [1 1 1] polarization 
[44]. Through the elastic constants, we can obtain the 
zener anisotropy parameter.  

For cubic single crystal, this parameter can be 
calculated by using the following equation: [45]  

 
             Z = 2C44/(C11 - C12)                               (9)  

                                                            
The obtained values of the Zener anisotropy factor 

at different values of pressure are presented in fig. 9. 
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Fig. 9. Zener anisotropy parameter versus the hydrostatic 

pressure of the (B3) AlP  
 

If Z < 1 the crystal is stiffest along <100> cube 
axes, and when Z > 1, it is stiffest along the <111> body 
diagonals. The body-centered cubic alkali metals (Li, 
Na, K) are much stiffer along <111> directions, as are 
the column IV elements (C, Si, Ge) with the diamond 
structure [45]. In both structures the nearest-neighbor 
bonds are also in <111> directions. For alkali halide 
crystals with the rocksalt structure (NaCl, KCl, RbCl), 
the cation-anion bonds are oriented along <100> 
directions [45].  

The values of the Z varies from 1.95 (Z >1) at zero 
pressure, which corresponds to an almost anisotropic 
solid, to 2.17 at 9.50GPa, which induced  a small 

increasing of the ratio between the longitudinal acoustic 
velocities along [110] and [100] in this compound.  

The usual Born description for the stability of a cubic 
crystal is expressed in terms of elastic constants as follows 
[3] 
 

( ) 03/2 1211 >+= CCBT , ( ) 02/1211 >−= CCG
 
,   044 >C       (10) 

 
where Cij are the conventional elastic constants and BT is the 
bulk modulus. The quantities C44 and G are the shear and 
tetragonal moduli of a cubic crystal. These conditions are 
known as the spinodal, shear and Born criteria respectively.  
Wang et al [46], showed that under external pressure these 
relations need to be modified to describe changes in enthalpy 
rather than energy. 

When deformation is expressed, the new stability 
criteria for crystals under hydrostatic pressure have 
considered. To study the stability of (B3) AlP compound, the 
calculated values of the elastic constants at normal and under 
hydro-static pressure were compared with the generalized 
elastic stability criteria using the following relations [47]:     

                                                 

      
( ) 03/2 1211 >++= PCCK , 

  
( ) 02/21211 >−−= PCCG ,

 
         

                                 0' 44 >−= PCG
      

       (11)
    
                    The obtained values of the generalized elastic stability 

criteria of Born at different values of pressure are presented 
in Fig. 10.  
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Fig. 10. Born stability criteria, G, G´ and K varying 
 with the pressure of the (B3) AlP compound.  
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The requirement of mechanical stability in a cubic 
crystal leads to the following restrictions on the elastic 
constants, C11-C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0 
[48]. The elastic constants at zero-pressure obey these 
stability conditions, including the fact that C12 must be 
smaller than C11. Our calculated elastic constants also 
obey the cubic stability conditions, meaning that C12 < B 
< C11. As pressure is applied to (B3) AlP compound, it 
transforms from (B3) phase to the metallic nickel arsenic 
(NiAs) phase [6]. 

As shown in Fig. 10, we find that G decreases 
gradually with the pressure and vanishes at about 
22.25GPa, and G´ also decreases to zero but at a higher 
pressure. Therefore, the phase transition occurs at a 
much higher pressure of 22.25 GPa. This value obtained 
of the transition pressure Pt (GPa) is listed and compared 
with others experimental [4, 5, 53, 54] theoretical [6, 7, 
30, 49-52] data in Table 2.  

 
Table 2. Transition pressure Pt (GPa) of (B3) AlP in 
compa-rison with experimental [4, 5, 53, 54], and 
theoretical [6, 7, 30, 49-52] data. a from the Relative 
enthalpy method, b from generalized elastic stability of  
                    Born. c from the equation (12) 
 

 
Our work      6.62a                       22.25b                      19.04c 

Other works   9.5±5[4]exp            14[5, 53]exp           9.3 [6]       
                       7.7[7]      8.3[49]       ( 9.5 - 17)[50]      6.78 [30]   
                      < 43[51]             18.1 [52]       17.0±0.5   [54]exp   
 
 

For some group-IV, AII BVI and AIII BV semi-
conductors, the transition pressure to the first phase 
observed versus the bulk modulus B (B in GPa), it can 
be deduced from the following empirical relation [55]         
                                        

        ( )3))79(99/(1.0 +−= λBPt
             

 (12) 
 
where Pt is the transition pressure in GPa, and λ is a 
parameter appropriate (λ = 5) for the AIII-BV semicondu-
ctors. 

Using this formula, with the bulk modulus 
calculated from the relation of equation (2), the obtained 
value of the transition pressure Pt of (B3) AlP is listed 
and compared with other values of the literature.  

From the generalized elastic stability of Born, there 
is a metallization phase transition at around 22.25GPa; 
the most likely candidate is the NiAs structure. It is 
clearly seen that our result (22.25GPa) is substantially 
very higher than the value of 6.62GPa obtained from the 
relative enthalpy method, but the later (6.62GPa) is in 
agreement comparatively with the theoretical results of 
the Refs [7, 30, 49]; but, it is very lower than the 
experimental values [14, 54].    

It is clearly seen also, that our result (19.04GPa) 
calculated from the relation of equation (12), is also very 
higher than the value of 6.62GPa predicted on the basis  

of thermodynamic criteria, but it is in good agreement 
comparatively with the results obtained from the generalized 
elastic stability of Born. This value is also in good 
agreement with the value (18.1GPa) of the reference [52], 
and the deviation is only 5.19%. 

 
3.2.4 Piezoelectric coefficient 
 
Among the five symmetry classes belonging to the 

cubic system, only 4 3m and 23 classes exhibit the piezo-
electric effect, for the others (i.e., m3m, 432, m3) the 
piezoelectric effect being absent. In the first case, the 
piezoelectric tensor contains only one constant e14, is 
expressed C/m2, which is given as [56]                   
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The effect of the pressure on the piezoelectric 

coefficient e14 for AlP is presented in Fig. 11.  
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Fig. 11.  Effect of the hydrostatic pressure on the 
piezoelectric coefficient e14 for (B3) AlP. 

 
 

3.2.5 Electronic properties 
 
In order to investigate the effects of the hydrostatic 

pressure on the size of the energy gap and position of the 
conduction band minimum of the AlP compound, the band 
energies at selected symmetry points are examined as a 
function of the pressure. The results of our calculation for 
the direct and indirect bandgaps along the high symmetry 
directions in the Brillouin zone for AlP versus the 
hydrostatic pressure up to 9.50GPa are shown in Fig. 12.  

As for typical semiconductors, the fundamental gap 
decreases when the pressure increase (volume is 
compressed). The behavior of the bandgap variation under 
high hydro-static pressure is very similar to that found in 
other III-V materials [47]. 
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Fig. 12.  Pressure dependence of the Energy 
bandgaps

Γ−ΓE , LE −Γ
and optical energy  

bandgap 
Xg EE −Γ=  

 
For most semiconductors, the variation of the 

different band gaps under pressure can be described by 
the following quadratic expression [47, 57]: 
 

          Ei(P) = Ei(0) + c1 P + c2 P2                  (14)     
                                         

Where: c1 and c2 are respectively the linear and quad-
ratic pressure coefficients, they are given by:    
 

         c1= ∂Ei/∂p,    c2 = ∂2Ei/∂p2                    (15) 
 

The results for: the linear and quadratic pressure 
coefficients are reported in Table 3.  

 
Table 3. Linear and quadratic pressure coefficients  

of different bandgaps of (B3) AlP compound. 
 

 CV Γ→Γ  CV XEg →Γ=  CV L→Γ  

E(0)         3.115    1.408       2.663     

c1 (eV.Mbar−1)    0.091   -0.021      0.0406    

c2 (eV.Mbar−2)    -0.001   0.0002     -0.0006 

 
 

4. Conclusions  
 
A summary of obtained results in this work is given 

here in as follows: 
The calculated equilibrium lattice constant, the bulk 

modulus and its pressure derivatives at 0P = are in 
good agreement with the previous calculations reported 
in the literature.  

The pressures phase transition from the zincblende 
phase (B3) to the nickel arsenic (NiAs) phase of this 
compound are obtained from three methods, they are 
respectively at around 6.62GPa, 22.25GPa and 19.04 
GPa. The first value is generally in good agreement with 
the available theoretical data reported in the literature, 
but the second, and the third values are very higher than 
the available experimental and theoretical data reported 

in the literature. 
The calculated unit cell volumes under a series of 

applied hydrostatic pressures were used to construct the P-V 
data set, which was fitted by the Murnaghan equation. 

The crystal density, the independent elastic stiffness 
constants, the bulk modulus, the zener anisotropy factor, and 
the piezoelectric coefficient increase with the increasing of 
the hydrostatic pressure. 

The energy bandgap at the equilibrium volume is 
obtained, the minimum of the conduction band is found to be 
at X point, rendering this compound an indirect 
semiconductor with an indirect (Γv → Xc) optical transition 
of 1.408eV, this value is also in good agreement with the 
previous calculations, but it is under-estimate in comparison 
with the experiment results.  

The effects of the hydrostatic pressure on the size of the 
energy gap and position of the conduction band minimum of 
the (B3) AlP compound are investigated. The linear and 
quadratic pressure coefficients are also determined, the 
results obtained are generally in good agreement with 
available theoretical data reported in the literature. 
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